Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

-(0, y) → 0
-(x, 0) → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0)
p(0) → 0
p(s(x)) → x

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

-(0, y) → 0
-(x, 0) → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0)
p(0) → 0
p(s(x)) → x

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

-1(x, s(y)) → P(s(y))
-1(x, s(y)) → -1(x, p(s(y)))

The TRS R consists of the following rules:

-(0, y) → 0
-(x, 0) → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

-1(x, s(y)) → P(s(y))
-1(x, s(y)) → -1(x, p(s(y)))

The TRS R consists of the following rules:

-(0, y) → 0
-(x, 0) → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

-1(x, s(y)) → P(s(y))
-1(x, s(y)) → -1(x, p(s(y)))

The TRS R consists of the following rules:

-(0, y) → 0
-(x, 0) → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP

Q DP problem:
The TRS P consists of the following rules:

-1(x, s(y)) → -1(x, p(s(y)))

The TRS R consists of the following rules:

-(0, y) → 0
-(x, 0) → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.